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A complex angular momentum theory of modified Coulomb 
scattering 

K-E Thylwe and J N L Connor 
Department of Chemistry, University of Manchester, Manchester M I 3  9PL, U K  

Received 10 January 1985 

Abstract. This paper develops an exact complex angular momentum (CAM) theory of 
elastic scattering for a complex optical potential with a Coulombic tail. The present CAM 

theory avoids complications due to the long range nature of the Coulombic potential in a 
straightforward way. This is in contrast to the conventional approach in which the partial 
wave series is divergent and the scattering amplitude f ( 0 )  is usgally decomposed into a 
pure Coulomb amplitude and a modifying convergent partial wave series. After considering 
some general properties of the scattering matrix element S ( h ) ,  the Sommerfeld-Watson 
transformation together with a travelling wave (near-side far-side) decomposition, is used 
to obtain an exact representation for f ( 0 )  in terms of a background integral fB(0)  and a 
series of subamplitudes fz)( 0) .  New exact representations are derived for fB( 0)  when 
S(A) possesses local symmetries of the type S(-A) = S(A) exp(e2i.rrA) and S ( - A )  = S(A). 
The subamplitudes j'"*)( e )  are contour integrals and are the exact equivalents of the 
saddle-point integrals that arise in semiclassical theories. The f n * ' (  0 )  can also he evaluated 
in terms of the Regge pole positions and residues of S(A), which allows a flexible 
representation for f( 0)  to he derived. The exact results obtained in this paper unify the 
CAM theory of scattering for Coulombic and short range potentials and are especially 
suitable for the introduction of semiclassical approximations. 

1. Introduction 

Non-relativistic scattering for pure and modified Coulomb potentials is an old subject, 
dating back to the early days of quantum mechanics (e.g. Gordon 1928, Mott 1928). 
The mathematical complications introduced by the long range character of the Coulomb 
potential have been considered in several recent publications (Gesztesy and Lang 1981, 
Garibotti et a1 1980, Rowley 1978, Taylor 1974, Marquez 1972) and are now fairly 
well understood. 

The partial wave approach is of fundamental importance in low and medium energy 
ion-ion scattering for atomic, molecular, and nuclear collision systems and can be 
considered to be a formal solution for modified Coulomb scattering. There are, 
however, serious practical and conceptual limitations with this approach, which are 
not necessarily related to the presence of a Coulombic tail in the interaction between 
the colliding particles. It has been well known since the work of Ford and Wheeler 
(1959), that a major draw-back with a partial wave approach to heavy-particle scattering 
is its inability to explain simply the underlying dynamical mechanisms responsible for 
the rich variety of phenomena observed in the cross sections. Instead, concepts such 
as (complex, semiclassical) trajectories and surface/ Regge waves have proven more 
useful for explaining the physical significance of the scattering data (for a review see 

0305-44701851152957 + 17$02.25 0 1985 The Institute of Physics 2957 



2958 K-E Thylwe and J N L Connor 

Connor 1980). It is the aim of this paper to show how these different theories and 
concepts for modified Coulomb scattering can be treated in a unified and rigorous way. 

We first briefly summarise the relevant equations of the partial wave analysis in 
order to make the discussion more specific. We write the radial Schrodinger equation 
as (e.g. Messiah 1970, ch 11): 

where the Coulombic and centrifugal parts of the interaction have been made explicit, 
77 is the Sommerfeld parameter, k is the wavenumber and 1 is the angular momentum 
quantum number. The (modifying) ‘short range’ potential U ( r )  is usually a complex 
valued function of the real radial variable r and piecewise analytic in some region of 
the complex r plane containing the non-negative real I axis. 

Let $ , ( r )  in (1.1) denote the regular solution having the asymptotic form 

r )  - exp[-i( kr - 7 ln(2kr) - 17r/2)] - Sl exp[i( kr - r] ln(2kr) - 17r/2)], (1.2) 
r + + a  

where the exponentials represent the Coulomb distorted ‘free’ waves and SI, by 
definition, is the partial wave scattering matrix element. For pure Coulomb scattering 
SI = SF with the Coulomb S matrix given by (e.g. Joachain 1983, ch 6):  

(1.3) SF = r(I+ 1 + i T ) / r ( / +  1 - i T ) .  

The elastic scattering amplitude f( 0 )  is usually obtained from 

f (  6 )  = fc( 6 )  (1.4) 

wherefc(0) is the pure Coulomb contribution, given in closed form by (Joachain 1983, 
ch 6) 

r(i+i7)) exp{-iv 1n[sin2(e/2)]} 
r( 1 - i7) 2k sin2( 8/2) ’ = -71 (1.5) 

and where the modifying component fM( 0 )  is calculated from the partial wave series 

i ”  
k I = O  

& ( e )  =- (~+;)(s:-s,)P,(cos e). (1.6) 

It is thereby assumed that 

sI - s; + O( 1 P 2 ) ,  
1 - 0  

(1.7) 

which is satisfied by a large class of ‘short range’ potentials. Knowing the scattering 
amplitude f( e), the differential cross section I (  0 )  is simply obtained from 

m) = If(e)12. (1.8) 

The decomposition of the scattering amplitude into a Coulomb part and a modifying 
part in equation (1.4) is due to mathematical rather than physical reasons. The usual 
partial wave analysis, as it is applicable to non-Coulombic (i.e. 77 = 0) potentials, gives 
the amplitude in the familiar form 
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Unfortunately, equation (1.9) is sometimes erroneously claimed to be valid in the usual 
sense for long range potentials (i.e. 7 # 0), even if it is straightforward to prove that 
the sum is divergent (see, e.g., Taylor (1974), and for an excellent historical account see 
Marquez (1972)). It has recently been shown that equation (1.9) is in fact convergent 
in a distributional sense (Taylor 1974). More importantly the partial wave series (1.9) 
exists as an Abel sum (Gesztesy and Lang 1981). The justification of other practical 
techniques (Mott 1928, Yennie et a1 1954, Rowley 1978, Garibotti er a1 1980), to obtain 
from the divergent series (1.9) a convergent one, is merely a consequence of the Abel 
summability. Hence, a regularised way of defining the modified Coulomb amplitude 
is given by 

(1.10) 

where the factor D, (E)  acts as a smooth cut-off function for large partial waves. It is 
essential to have a smooth cut-off (Marquez 1972), but the precise shape is not important 
(Rowley 1978). For our particular purpose, which is entirely formal, it will be con- 
venient to choose the form (Inopin and Shebeko 1970, Kotlyar and Shebeko 1981) 

I l l ( & )  = exp[-E(l+ l/2)], E > 0. (1.11) 

A safe way to avoid any problems of convergence (such as the limiting procedure 
in equation (1.10)) is, of course, to rely on the familiar equations (1.4)-(1.6). The 
price one has to pay for this (conventional) convergent theory is the introduction of 
the two unphysical amplitudes & ( e )  and fM(e). We shall see in 0 3 that the defects 
associated with the formulations (1.4) and (1.10) disappear in an exact complex angular 
momentum (CAM) representation of the amplitude f (  e). This CAM representation turns 
out to be formally unaffected by the presence of a Coulombic term in the potential, 
which means that convergence problems and artificial decompositions do not appear. 
A similar alternative exact approach for pure Coulomb potentials has been discussed 
by Rowley (1978) and related approximate theories have been presented by, for 
example, Knoll and Schaeffer (1976) and Rowley and Marty (1976). 

In contrast to many recent theories, particularly in nuclear physics and heavy-ion 
scattering, where a parametrised S matrix is assumed (Frahn 1980, Frahn and Rehm 
1978, Fuller and Moffa 1976, Kauffmann 1977, Shastry and Satpathy 1981), we shall 
instead adopt the philosophy that a local optical potential is known, so that the 
properties of the S matrix rigorously follow from that potential through the radial 
equation (1.1). 

Utilising the analytic behaviour of Sl in the CAM plane, we exactly transform f (  0) 
into a series of subamplitudes, each carrying the contribution from a specific physical 
‘mechanism’. By ‘mechanism’ we mean here the underlying cause of, for example, 
such well known features as rainbows (of various complexities), orbiting, tunnelling 
resonances and diffraction (Norenberg and Weidenmiiller 1976, Connor 1980, Child 
1984). 

Some of the important phenomena just mentioned are closely identified with 
semiclassical terminology. In the present exact CAM formulation they are represented 
by contour integrals confined to the half-plane Re( l+ f ) sO .  The use of rigorous 
asymptotic techniques (Gross 1976, Olver 1974) and catastrophe theory ( Poston and 
Stewart 1978) provide a powerful link between, on the one hand, the properties of 
these contour integrals and, on the other hand, the classification and understanding 
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of the corresponding mechanism. There are also scattering features of a more wave-like 
nature, which are conveniently accounted for by the CAM (Regge) poles. 

We hope that our contribution to the CAM theory can form a rigorous basis for an  
improved understanding of the link between structures in cross sections and  the 
topology of the (complex) potential curves, whenever the notion of a local potential 
is meaningful. 

This paper is organised as follows. In 5 2 we discuss how the scattering matrix 
element SI can be analytically continued into the complex domain Re( 1 + :) 3 0 and 
we study its general behaviour. Special attention is paid to ‘local’ and  ‘global’ sym- 
metries. We also consider the effect of singular potentials of the Lennard-Jones type 
on the symmetry properties of SI. With the aid of well known analytic properties of 
Legendre functions of complex degree, we then exactly transform the partial wave 
series representation of the scattering amplitude into a series of subamplitudes in 9 3, 
where we also discuss the properties of the transformed amplitude. Our conclusions 
are given in § 4. 

2. Analytic properties of the scattering matrix 

2.1. Introduction 

A complex angular momentum (CAM) transformation of the scattering amplitude f( e )  
requires the analytic continuation of SI. The continuation of the Legendre polynomials 
Pl(cos 0 )  into the CAM plane is standard (e.g. ErdClyi 1953, Robin 1958) and  the 
relations we need will be quoted in 9 3 without derivation. 

There is a certain arbitrariness, in general, in continuing the discrete set of complex 
values SI to form an  analytic function S(A) of the complex variable A l+i (de Alfaro 
and Regge 1965). In the present paper we shall define S(A) by analytic continuation 
of the  corresponding radial Schrodinger equation (1.1) and its regular solution satisfying 
(1.2), where now 1 is complex valued. 

2.2. Pure Coulomb scattering 

For the Coulomb scattering matrix element S? the situation is particularly simple 
because an  analytic closed form solution is available (Joachain 1983, ch 6). Hence, 
we shall first study the special case SI = SF. From equation (1.3) and  elementary 
properties of Euler’s gamma function (Davis 1965) it follows that Sc(A) is free of 
poles in the half-plane Re A 2 0. Furthermore, from Stirling’s formula (Jeffreys and  
Swirles 1972, p 467, equation (9)): 

r(i + z )  - ( 2 ~ ) ’ ’ ~  exp[(z+i )  In(z++)  - ( z + f ) ] ,  (2.1) 

it follows that asymptotically 

Sc(A) - A ” ” ,  Re A 3 0 ,  
I A l - m  

where 7) is the Sommerfeld parameter. The modulus of SC(A) is given by 

iSc(A)l - exd-27) arg A ) ,  
L I - =  
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with 

- . r r / 2 s a r g A s 7 ~ / 2 .  (2.4) 

The relations (2.3) and (2.4) imply the following asymptotic behaviour for IS"(A)l 
along the imaginary A axis 

Recalling that 7 = Z,Z,e'/ hu, with obvious notation, we conclude that the behaviour 
along the imaginary A axis may vary quite strongly from one Coulomb system to 
another. For example, the heavy-ion nuclear collision 28Si+ '60 at =35 MeV has 
7 ~ 9 . 5 ,  whereas for 20 MeV p + p  collisions, 7 ~ 0 . 0 2 5 .  The two multiply charged 
atomic-ion collisions N2++ H' and Ar"++ H-, at 1 eV yield 7 = 300 and 7 = -2800, 
respectively. For the transformations in § 3, however, it will suffice to know that the 
right-hand side of (2.5) is independent of A and hence equal to a finite constant. 

Before discussing the most general properties of the scattering matrix S(A), it is 
useful to study in more detail the symmetries of Sc(A). By doing so, one can learn 
much about S(A) itself in those regions of the complex A plane dominated by the 
Coulomb potential. 

Using the relation (Davis 1965, formula 6.1.17): 

r(;+z)r(;- Z )  = . r r /~os(rrz) ,  (2.6) 

in equation (1.3), gives the global reflection symmetry relation 

Three limiting cases are apparent 

(a) Strong Coulomb repulsion limit 

Sc(-A) = Sc(A) exp(-2ivA), 7 ++CO. 

(b) Weak Coulomb limit 

SC(-A) = Sc(A), 7 + 0 .  

(c) Strong Coulomb attraction limit 

Sc(-A) = Sc(A) exp(2inA), 7 + -CO. (2.10) 

The usefulness of knowing these three symmetry limits will become evident in § 3 when 
dealing with the background integral and its physical interpretation. A few remarks 
should, however, be made at this point. Neither of the symmetries (2.8) and (2.10) is 
globally valid for a pure Coulomb interaction, but may be approximately satisfied in 
a large region of the A plane about the origin A = 0. Although the weak Coulomb limit 
does exist, it is trivial and uninteresting since Sc(A) = 1 there (cf equation (1.3)). It 
is not known to the authors what types of potentials (if  any) satisfy the symmetries 
(2.9) and (2.10) exactly. But it is interesting to note that (2.8) is globally valid for 
S(A) if the potential is singular at the origin r = 0 (see below). This class of potentials 
is very large (Frank e t  a1 1971) and in atomic and molecular scattering includes the 
familiar Lennard-Jones potentials: U (  r )  = gr-"' - hr-", m > n > 2. Here g and h can 
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be complex coupling constants (except for g = - igl) without the reflection symmetry 
(2.8) being broken (Thylwe 1983a). 

A straightforward semiclassical analysis of the three symmetries, using the notion 
of a deflection function @ ( A )  = (1/2i)(d/dA)[ln S(A)], reveals different behaviour for 
‘head-on’ ( A  = 0) collisions: O(0) = T ,  0 and -7, corresponding to (2.8), (2.9) and 
(2.10) respectively (Rowley 1978). The classical conclusion must obviously be that 
(2.8) holds for potentials with a non-penetrable repulsive core, while (2.9) corresponds 
to potentials which cannot produce backward reflection at any energy in a head-on 
collision. The third symmetry (2.10) is unlikely to be valid globally for any realistic 
class of potentials, because for O(0) = -T to hold at all scattering energies, we must 
have confinement, which is a contradiction. 

2.3. Properties of S(A) for a general potential with a Coulombic tail 

Next we consider some easily established properties of S(A) for a general potential 
with a Coulomb tail. As mentioned above, one case where an exact global symmetry 
relation exists is for a singular potential (de Alfaro and Regge 1965, Frank er a1 1971). 
This result is not affected by the presence of a Coulomb component in the potential. 
We shall not present the proof here, since it is analogous to the derivation given below 
for other symmetry properties (see also Thylwe 1983a). Thus we merely state the result 
below. 

If r2 U (  r )  + CO, as r + 1 0 ,  and U ( r )  is not purely attractive at the origin, then 

S(-A) = S ( h )  exp(-2 i~A)  (2.11) 

without restriction in the complex A plane. 

Consider the radial Schrodinger equation (1.1) written in the notation A = I + ; :  
Another relation of interest is the so-called extended unitarity symmetry relation. 

(2.12) 

with the boundary conditions 

*A (0) = 0 (2.13) 

cLA(r) - e x p [ - i ~ ( r ) + i A ~ / 2 ]  -S(A) e x p [ i ~ ( r ) - i A ~ / 2 ] ,  (2.14) 

where we have introduced a symbol K (  r )  through K (  r )  E kr - 7 In(2kr) + ~ / 4 ,  for the 
sake of convenience. Let us also define a particular regular wavefunction $,, ( r ) ,  which 
is a solution of the Schrodinger equation with the potential U ( r )  replaced by its 
complex conjugate U*( r ) ,  i.e. 

T - + X  

U * ( r ) - T  + , ( r ) = O ,  (2.15) 

with 

$A (O) = 0, (2.16) 

j A ( r )  - e x p [ - i K ( r ) + i ~ . r r / 2 1 - ~ ( ~ )  e x p [ i K ( r ) - i ~ . r r / ~ l .  (2.17) 

$ ( A )  is the scattering matrix element for the potential 27k/ r + U*( r ) .  Next we observe 

r++m 
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that $ T * ( r )  and + , ( r )  are both regular solutions satisfying the same differential 
equation; hence they must be proportional to one another. The proportionality factor 
is determined by comparison of the asymptotic wavefunctions, with the result that 

$ f * ( r )  = - - i * ( A * ) + * ( r ) ,  (2.18) 

and hence 

$*(A*)s(A) = 1. (2.19) 

The extended unitarity symmetry (2.19) for a complex short range potential U ( r ) ,  in 
the presence of a Coulomb term, is formally equivalent to the non-Coulombic case 
(cf equation (3.18) in Thylwe 1983a). Such a symmetry establishes a unique correspon- 
dence between the poles and zeros of the scattering matrix when optical potentials are 
used. Equation (2.19) reduces to the well known result 

s*(A*)s(A) = 1, U*( r )  = U (  r )  (2.20) 

for a real potential. 
We now discuss briefly the location of the poles and zeros of S (  A ) in the half-plane 

ReA 3 0 .  It will turn out that the introduction of a Coulomb tail in  the full potential 
does not alter the fundamental theorems already established for short range interactions 
(de Alfaro and Regge 1965, Newton 1964, Connor 1975, Thylwe 1983a). It is straightfor- 
ward to construct from (2.12) and its complex conjugate, the equality 

(2.21) 

which, with the aid of (2.13) and (2.14), and their complex conjugates, leads to the 
important relation: 

IS(A)12=exp(-2.rrImA)+ k-’exp(-nlmA) [Im U ( r ) + 2  ReA Im A/r2]I(LA12dr. 

(2.22) 
loX 

From (2.22) we make the following observation: if, for a given A such that Im A GO 

(and Re A > 0), the potential U ( r )  in (2.12) satisfies the condition 

lox Im U (  T)li,!/A 1’ d r  S 0, (2.23) 

then we have 

IS(A)lSexp(-.rr Im A ) .  (2.24) 

The modulus of S(A) is, consequently, bounded for finite Im A in the fourth quadrant 
and has no poles there. The poles ( i f  any) present in the half-plane Re A > 0 must 
therefore lie in the first quadrant. I t  is not possible, however, to restrict the zeros of 
S(A) to the fourth quadrant, as would be true for real or emittive (Im U(r )>O)  
potentials. 

Most of the results discussed above are important for understanding the transforma- 
tions made in the next section. It is also necessary to make some additional assumptions, 
which we shall merely suppose to be true and realistic for many situations (de Alfaro 
and Regge 1965), i.e. 

( i)  S(A) is meromorphic with simple poles in the half-plane Re A 3 0 .  
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(ii) IS(A)l is bounded from above as IAl+0 ; :  in some compact sector (arg A I S  Q 

with O <  Q 6 77/2, containing the positive real A axis. 
When Q # 77/2 in (ii) it is also convenient to make an assumption about the 

asymptotic behaviour of S(A) along the positive imaginary axis: 
(iii) IS( A)/ is bounded from above as ( A /  + 0;: along the positive imaginary A axis. 

For a pure Coulomb potential, relations (2.3)-(2.5) imply we can choose cy = 77/2 in 
( i i )  so that the corresponding sector actually coincides with the half-plane Re A 3 0. 
It is clear that assumption (iii) is superfluous in such a situation. However, if a singular 
potential is present we expect from non-Coulombic scattering theory that an infinite 
number of CAM poles and zeros lie along strings extending to infinity in the first and 
fourth quadrants respectively (e.g. Brander 1966, Frank er al 1971, Connor er a1 1979). 
In this case Q cannot be chosen equal to 57/2 and assumption (iii) provides additional 
information on the asymptotic behaviour of S(A). It can be checked from relations 
(2.5) and (2.24) that assumption (iii) is consistent with the known properties of S(A) 
for pure Coulomb and singular potentials. 

3. Transformation of the scattering amplitude 

The starting point for our transformation of f ( 0 )  is equations (1.10) and (1.11). We 
make this choice because the derivation is then straightforward and concise. For the 
same reason, we employ the Sommerfeld-Watson transformation (e.g. Newton 1964) 
rather than the Poisson sum formula (Morse and Feshbach 1953, p 466). 

Applying the Sommerfeld-Watson transform to the partial wave series (1.10) and 
(1.11) results in the contour integral 

where the contour C encloses the physical angular momentum quantum numbers 
I = O ,  1 , .  . . in the negative (clockwise) sense (see figure 1). In (3.1) we have made use 

I L - 
( :  ~ = - =  ~: ~ 

- - -  
Re A 

k 2  312  512 712  912 1112 1312 1512  - - -  

0 

Zeros of S lh l  0 ~~ 

0 

Figure 1. The complex A plane and the contour C used in the Sommerfeld-Watson 
transformation. 
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of the standard complex continuation of the Legendre polynomials, based on 
Legendre’s differential equation. The resulting Legendre functions of the first kind of 
complex degree are entire analytic in the half-plane Re A 3 0, with asymptotic behaviour 
for \ A /  sin 4++00 
P,(cos 4 ) =  PA-,,z(cos 4)-(27rA sin 4)-”2{exp[i(A4 - ~/4)]+exp[-i(Ad - 7r/4)]}. 

(3.2) 
An inspection of equations ( l . l l ) ,  (2.2) and (3.2), together with the basic assumptions 
(2.ii) and (2.iii), reveals that the convergence of the integral in (3.1) depends on the 
fact that the cut-off parameter E is positive. We therefore cannot interchange the 
limiting and integration procedures. The situation becomes quite different, as we shall 
see below when the asymptotic parts of C are deformed away from the real A axis. 

The lower part (Im A S 0) of the contour C can, with the aid of assumption (2.ii) 
in § 2, be deformed to approach infinity so that Im A + -CO in the fourth quadrant. A 
similar shift can be performed in the first quadrant if we ensure that all the poles of 
S(A) are to the left of the contour. The resulting contour C’ is indicated in figure 2. 
At this point we can take the limit E + +O since the integral is now convergent. 

4 
E - 

X I 

Figure 2. The contours C’, Cl and r in the complex A plane. The crosses and open circles 
indicate the positions of the poles and zeros of S ( A )  respectively. 

In order to isolate the contribution from the CAM poles, we have to construct a 
contour by adding and subtracting a contribution along the positive imaginary axis. 
According to figure 2, we may then split the integral into two parts: one part is defined 
on a non-closeable path r, and the other part is defined on a contour R which essentially 
surrounds the poles in the first quadrant. 
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Once this decomposition of the scattering amplitude f (  e )  into 5, dh +jn dA is 
completed, the non-dynamical contribution in each integrand can be eliminated. Along 
a, since the integrand has no poles enclosed by the contour we have 

A 
cos( .rrA ) 

P ~ - ~ / ~ ( - c o s  e)  ~ dA = 0. (3.3) 

From the odd symmetry of the integrand it also follows that 

A A 
P A - l 1 2 ( - ~ ~ ~  e )  ~ dh GO. (3.4) cos(.rrA) 

Ph-l/2(-cOs e )  - 
cos(.rrA) 

Hence the scattering amplitude can be written in the form 

(3 5) 
The evaluation of the second integral in (3.5), using the residue theorem, w( uld give 
us the familiar 'backspace' Regge pole representation (e.g. Newton 1964). However, 
instead of doing this, it will prove more useful to analyse the terms in (3.5) with 
semiclassical considerations in mind. 

In the following manipulations, we shall make frequent use of the travelling wave 
decomposition (Nussenzveig 1965, Fuller 1975) of the Legendre functions (Robin 
1958), i.e. 

(3.6) P~-~,,(COS e )  = Q\--)~,,(cos 6 )  + Q:+-)~/~(cos e), 
where, for large / A  sin 01, 

Q ~ ? l , 2 ( ~ o s  0 )  - (2.rrA sin exp[*i(AO - ~ / 4 ) ] .  (3.7) 

In terms of the Legendre function of the second kind Q A - 1 , 2 ( ~ ~ ~  e), these travelling 
angular waves are defined by 

Q:L_L~,,(COS e )  = ~ ( P ~ - ~ , ~ ( c o s  e ) +  (2i/.rr)~,-,,,(cos e)) .  

pA-I,2(-cos e) = iQYi),/,(cos 8 )  e-isA -iQ\?,,,(cos e )  eiffA. 

(3.8) 

The Legendre function PA (-cos 0 )  can be shown to have the decomposition 

(3.9) 

Note also that pA-l,2(cos e )  is singular for 0 = 7, whilst Q ? 1 ~ 2 ( ~ ~ ~  e )  and 
Q ~ d 1 / 2 ( ~ ~ ~  e )  are both singular for 8 = 0, 7 ~ .  

Since the background integral in (3.5) requires a different treatment (see below) 
we shall first apply (3.9) to the second integral in (3.5). Making use of the identity: 

[ C O S ( T ~ ) ] - ' = ~ ~ ' ~ "  1 (-1)" e2inffA, ImA>O. (3.10) 
it 

n =o 

we arrive at the following general result of the CAM theory: 

(3.11) 

with 

f : - ' (e )  = -- ( - l )n  S(A)Q:--),,,(cos e )  exp(2in.rrA)A dh, n 3 1, (3.12) 
i 
k 
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i 
fr)(6)= -i (-1)“ S(A)Ql;”l,z(cos 6)  exp(2inrA)A dA, n20, (3.13) 

(3.14) 

The subamplitudes fF’(6) defined in (3.12) and (3.13) are the exact equivalents 
of the saddle-point integrals that appear in semiclassical theories (Knoll and Schaeffer 
1976, Rowley and Marty 1976, Connor 1980). In particular, the fF’(6) correspond to 
(complex) trajectories with a negative deflection, whilst the trajectory directly reflected 
from the core of the potential (if it exists) is hidden in the background amplitude 
fB( @)-see below. The superscripts ( - ) and ( + ) refer to a ‘near-side’ and ‘far-side’ 
decomposition (Fuller 1975, Hussein and McVoy 1984), respectively, and n counts 
the number of revolutions around the scattering centre. We shall return to discuss 
these subamplitudes later on, in connection with the introduction of Regge pole 
contributions into f( e) .  

We shall now try to clarify the hidden physics of the ‘background integral’ fB( e) .  
It is important to emphasise that f B ( 8 )  often makes a significant contribution to the 
total amplitude f( e )  for medium- and low-energy heavy-particle scattering processes. 
For example, pure Coulomb scattering is entirely ‘background’ scattering. In the limit 
S(A)+SC(A), i.e. U ( r ) = O ,  there are no Regge poles in  the half-plane Re A 2 0 ,  and 
all subamplitudes in (3.11), except fB(0),  vanish by Cauchy’s theorem. Thus we can 
derive the CAM representation of the Coulomb amplitude, 

(3.15) 

which is exact and well defined (convergent). Since Sc(A) is bounded in the half-plane 
Re A 3 0 (recall equations (2.1)-(2.5)), we may also deform r to lie along the imaginary 
A axis. 

We next discuss the general background amplitudef,( e )  in the light of its connection 
with the Coulomb amplitude. From a semiclassical point of view, f B ( @ )  must carry 
information about the trajectory contribution that is directly reflected (or attracted) 
by the potential core if such a contribution exists. This fact becomes evident on writing 
f B ( @ )  in the alternative form, 

(3.16) 

where the identity 

PA-I,2(-cos 8 )  = -2i C O S ( ~ A ) Q \ - ! ~ , ~ ( C O S  @ ) + i  exp(-ixA)P,-,,,(cos e)  
has been used. The first term in (3.16) can be recognised as the exact counterpart of 
the directly reflected semiclassical scattering contribution from the core of a singular 
(impenetrable) potential (Connor and Mackay 1978)i. For a regular potential this 
term diverges as Im A -f +CO. The divergence is, however, exactly cancelled by the 
second term in (3.16). In fact, whenever a regular potential possesses a physically 
significant repulsive core, then the role of the second term is essentially only to cancel 
the divergence of the first term. This is not immediately obvious from (3.16), since 
the second integrand is certainly not ‘small’ in the neighbourhood of the real A axis. 

In equation ( 1 5 )  for - i ( i / k )  read - ( i / k ) ,  
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Instead, the reason is that S ( A  j for a regular potential with a physically important 
repulsive core possesses, on a part of the imaginary axis near the origin, the local 
strong repulsion reflection symmetry S ( - A )  = S ( A )  exp(-2i.rrA) (cf equations (2.8) and 
(2.11)). 

From equation (3.16) and the even character of both cos(.rrA) and PA-I/2(cos e), 
the following modified exact expression can be derived: 

s(A)Q!,?l/z(COS 8)A dA 

exp(-i.rrA) . o  +'J [ S ( A ) - S ( - A )  exp(2i.rrA)l PA-~,~(cos 8)A dA 
2k I-,, COS( T A  ) 

(3.17) 

where the truncated contours rid, and F-i,, are defined in figure 3. If the region of 
local symmetry is large enough, A can be chosen so that iA is sufficiently far away 
from the saddle points of the first integral. In addition the symmetry-breaking contribu- 
tion in the second integral, as well as the tail contribution in the last two integrals, 
will become insignificant in this situation. 

When U (  r j  contains a singular potential core, no matter how small, the expression 
(3.17) reduces to the corresponding non-Coulombic result (Connor and Mackay 1978) 
on letting A + +CO, i.e. 

Figure 3. The contours r8,, and r-,,, in the complex A plane. The crosses and open circles 
indicate the positions of the poles and zeros of S(A) respectively. 
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Similarly, one can use the fact that the S matrix may also locally satisfy the reflection 
symmetries S(-A) = S(A) and S(-A) = S(A) e x p ( 2 i ~ A ) ,  in the important region near 
the origin. Again, the analogy with the pure Coulomb cases in (2.9) and (2.10) means 
we can derive two alternative exact representations for the background amplitude: 

f B ( e ) = l  J o  [S(A)-S(-A)]P,_,/,(-cos e)- dA 
2k iA COS( T A )  

and 

(3.18) 

A dA 
exp( i T A )  
COS( T A  ) 

- i  2 

[S(A) -S(-A) exp(-2i~A)]P,-~,,(cos e )  

(3.19) 

In the derivation of (3.19) we have made use of the identity 

Q:?,/,(cos e)  =2i  C O S ( T A ) Q ~ ~ , / ~ ( C O S  e)  - i  exp(i.rrh)PA-l,2(cos e) .  
The representation (3.18) suggests that fB( e )  will be physically insignificant when 

the local symmetry S(-A)=S(A) holds near the origin. All the important physical 
effects are then contained in the remaining subamplitudes (3.12) and (3.13). As pointed 
out in § 2, we cannot give an example of a non-vanishing potential for which this 
symmetry is satisfied globally. On the other hand, it is trivial to construct a para- 
metrised S matrix with this property (Remler 1971). 

When the third kind of local symmetry is present, as for a strong Coulomb attraction 
(cf equation (2.10)), the representation (3.19) is the relevant one. In this case f B ( e )  

corresponds physically to ‘attractive’ trajectories with winding number n = 0. At first 
sight it appears that these trajectories are also accounted for by the amplitude fA+)( 0)  
in (3.11). This apparent double counting of trajectories will now be explained. 

Consider as a simple example the pure attractive Coulomb potential. All trajectories 
are attracted to the scattering centre for such a potential. The classical deflection 
function increases monotonically from -T to 0, as A moves along the real positive 
axis. There is no orbiting phenomenon, since no centrifugal barrier exists. Con- 
sequently, the only relevant terms in (3.11) are &(e)  and f A + ) ( O ) .  Equations (3.13) 
and (3.19) show that the integrands for fB(  e )  and SA+’( 0 )  are essentially the same, but 
the contours of integration are quite different. The behaviour of the deflection function 
implies there is only one saddle point. This saddle point is passed through twice when 
evaluatingfh+’( 0 )  along the (deformed) contour 0. Hencefh”( e )  vanishes whilef,( e )  
remains. Another way of deciding whether the subamplitudes defined on R (i.e. all 
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but f B ( 6 ) )  vanish or not, is to examine the S matrix poles in the CAM plane. If no 
poles are present in the first quadrant, as is the case for a pure Coulomb potential, 
then only f B ( 6 )  is left. 

We shall not attempt to exhaust all conceivable situations where fB( 6 )  corresponds 
to attractive trajectories. The background amplitude fB( 0 )  obviously has many hidden, 
yet physically important properties. A key role for understanding fB( 6 )  is the local 
symmetry of the S matrix, which reflects the classical nature of the potential core (if 
not too complex), e.g. the behaviour of the deflection function near A = 0. 

To csnclude this section we shall show how the CAM poles can be used to provide 
an alternative exact description of the subamplitudes fF)( e) .  In fact, the integration 
contour R has been constructed so that it can be closed around the S matrix poles 
making possible an evaluation by residues. It is obvious that this same set of poles 
can also be used to characterise all of the subamplitudesf?'( 0 ) .  Thus if A,, rn = 0 , l  . . . 
are the positions in the first quadrant of the poles of the S matrix (finite or infinite in 
number) and r,  are the corresponding residues, then application of the residue theorem 
converts (3.12) and (3.13) into 

The simple way in which the winding number n enters into equation (3.20) lets us 
analytically sum as a geometric series (since Im A, > 0) an infinite number of consecu- 
tive subamplitudes. Thus 

N+sO, N - 3 1 .  (3.21) 

The subscript P in (3.21) indicates a pole representation and N, is the minimum 
winding number of the far-side ( + ) or near-side ( - ) waves (or trajectories). Because 
of the factor exp[i(2N, - l ) rA, , , ]  in the residue series (3.21), it is evidently more difficult 
to describe phenomena with a small winding number n than those with a large n. 
Furthermore, for n (or N,) fixed, & ) ( e )  and fr)( 6 )  converge more rapidly in the 
forward and backward directions respectively, provided 8 is not too close to 0 or r 
where the Q ~ , ) ! , 1 2 ( ~ ~ ~  6 )  are singular. An illustrative example of the convergence 
properties off;' ' ( e )  is found in rainbow scattering for non-Coulombic systems (Connor 
and Jakubetz 1978, Connor et a1 1981). Here, onlyfB( e) andfi+'( e )  give a significant 
contribution in (3.11). The background integral fB( 6 )  represents the directly reflected 
trajectory from the core of the potential and fA+) (O)  can be represented either by a 
uniform Airy amplitude or a residue sum of the form (3.20). When the scattering 
possesses a pronounced primary rainbow, the residue series is slowly convergent in 
the classically allowed range of angles. In contrast to this, CAM pole descriptions have 
proved to be a particularly elegant and accurate method for describing classically 
'forbidden' events involving complex valued classical trajectories (Connor et a1 1981), 
where the Regge poles correspond physically to surface or creeping waves. The CAM 

theory is also useful for describing scattering when there are a large number of orbiting 
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trajectories (Korsch and Thylwe 1983, Thylwe 1983b) and for the analysis of tunnelling 
(shape) resonances (Connor 1972, Connor and Smith 1983). 

On combining equations (3.20) and (3.21), the scattering amplitude f( e) can be 
written in the form 

N_- l  N+-l  

f ( e ) = f d e ) +  C fA-W+ C f ~ ) ( e ) + f ~ ~ k - ( e ) + f ~ ~ + ( e ) .  (3.22) 
n = l  n = O  

The presence of the integers N ,  and N -  makes this representation particularly flexible. 
This is a desirable feature in inversion theories for example, where one wants to 
minimise the total number of significant terms in (3.22). However, it is necessary to 
remember that each subamplitude, fF)( 6 )  and/or fFk*( e), may have several com- 
ponents if there are multiple saddle-points or several contributing pole terms. 

4. Concluding remarks 

An exact and flexible representation of the scattering amplitude f( 0) has been derived, 
which provides a suitable starting point for rigorous and systematic approximation 
schemes. The present derivation is simpler than that given earlier (Thylwe 1983a), 
which was restricted to short range potentials. We have shown that the presence of a 
long range Coulomb tail can be incorporated into the theory and that it does not 
introduce any essential difficulties. 

The CAM formulation removes insignificant contributions from the real 1 axis. Put 
in other words, small quantum effects are transferred to the ‘tails’ of the contour 
integrals or, if present in the half-plane Re( l+1/2)20 ,  to the remote C A M  poles of 
the S matrix. 

We have discussed the semiclassical aspects of the background amplitude fB( 0 )  in 
the light of local symmetries of the S matrix. One of the reflection symmetries 
considered is globally valid if the potential contains a singular core. 

I t  is important to realise that our CAM formulation is valid for arbitrarily strong 
absorption in the optical potential, which is of particular interest for certain heavy 
ion scattering processes. There is no reason to suppose that the saddle-point integrals 
arising from the subamplitudes lose their meaning in the presence of strong absorption. 
On the contrary the CAM theory is likely to be particularly useful in such situations. 
The 1 window formalism (Rowley 1980) and other sharp-cut-off theories (see, e.g., 
Inopin and Shebeko 1970) designed for this type of problem, differ from the CAM 

approach in one fundamental respect: they explore the S matrix on the real I axis, 
parametrising its behaviour there with basically real shape parameters. The problem 
of the divergence of the partial wave series then arises, so that either SI is split into a 
pure Coulomb part and a modifying part (Rowley 1980), or else a convergence factor 
as in equation (1.10) has to be introduced (Inopin and Shebeko 1970, Kotlyar and 
Shebeko 1981). A noticeable feature of these essentially real angular momentum 
theories is that it makes sense to rearrange the partial wave sum, or the corresponding 
Poisson integrals, into a form in which there appears the difference 2, = Sl - or 
the derivative dS/dl, respectively. A similar approach in the CAM formulation would 
destroy the simplicity of the contour integrals (the corresponding residue series are 
unaffected) without bringing further insight into the strong absorbtion mechanism. 
Systematic comparisons of the strengths and weaknesses of these differing theories 
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are, however, lacking at present and a complete discussion of scattering for strong 
absorption goes beyond the scope of this paper. 
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